Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Hereditas ; 159(1): 45, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2139780

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused a series of biological changes in cancer patients which have rendered the original treatment ineffective and increased the difficulty of clinical treatment. However, the clinical treatment for cancer patients infected with COVID-19 is currently unavailable. Since bioinformatics is an effective method to understand undiscovered biological functions, pharmacological targets, and therapeutic mechanisms. The aim of this study was to investigate the influence of COVID-19 infection in cancer patients and to search the potential treatments. METHODS: Firstly, we obtained the COVID-19-associated genes from seven databases and analyzed the cancer pathogenic genes from Gene Expression Omnibus (GEO) databases, respectively. The Cancer/COVID-19-associated genes were shown by Venn analyses. Moreover, we demonstrated the signaling pathways and biological functions of pathogenic genes in Cancer/COVID-19. RESULTS: We identified that Go-Ichi-Ni-San complex subunit 1 (GINS1) is the potential therapeutic target in Cancer/COVID-19 by GEPIA. The high expression of GINS1 was not only promoting the development of cancers but also affecting their prognosis. Furthermore, eight potential compounds of Cancer/COVID-19 were identified from CMap and molecular docking analysis. CONCLUSION: We revealed the GINS1 is a potential therapeutic target in cancer patients infected with COVID-19 for the first time, as COVID-19 will be a severe and prolonged pandemic. However, the findings have not been verified actually cancer patients infected with COVID-19, and further studies are needed to demonstrate the functions of GINS1 and the clinical treatment of the compounds.


Subject(s)
COVID-19 , Neoplasms , Humans , Computational Biology , COVID-19/genetics , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/genetics , Pandemics , DNA-Binding Proteins
2.
BMC Cancer ; 22(1): 687, 2022 Jun 22.
Article in English | MEDLINE | ID: covidwho-1902364

ABSTRACT

BACKGROUND: Patients with lung adenocarcinoma (LUAD) may be more predisposed to coronavirus disease 2019 (COVID-19) and have a poorer prognosis. Currently, there is still a lack of effective anti-LUAD/COVID-19 drugs. Thus, this study aimed to screen for an effective anti-LUAD/COVID-19 drug and explore the potential mechanisms. METHODS: Firstly, we performed differentially expressed gene (DEG) analysis on LUAD transcriptome profiling data in The Cancer Genome Atlas (TCGA), where intersections with COVID-19-related genes were screened out. Then, we conducted Cox proportional hazards analyses on these LUAD/COVID-19 DEGs to construct a risk score. Next, LUAD/COVID-19 DEGs were uploaded on Connectivity Map to obtain drugs for anti-LUAD/COVID-19. Finally, we used network pharmacology, molecular docking, and molecular dynamics (MD) simulation to explore the drug's therapeutic targets and potential mechanisms for anti-LUAD/COVID-19. RESULTS: We identified 230 LUAD/COVID-19 DEGs and constructed a risk score containing 7 genes (BTK, CCL20, FURIN, LDHA, TRPA1, ZIC5, and SDK1) that could classify LUAD patients into two risk groups. Then, we screened emetine as an effective drug for anti-LUAD/COVID-19. Network pharmacology analyses identified 6 potential targets (IL6, DPP4, MIF, PRF1, SERPING1, and SLC6A4) for emetine in anti-LUAD/COVID-19. Molecular docking and MD simulation analyses showed that emetine exhibited excellent binding capacities to DDP4 and the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CONCLUSIONS: This study found that emetine may inhibit the entry and replication of SARS-CoV-2 and enhance tumor immunity by bounding to DDP4 and Mpro.


Subject(s)
Adenocarcinoma of Lung , COVID-19 Drug Treatment , Emetine , Lung Neoplasms , SARS-CoV-2 , Adenocarcinoma of Lung/complications , Adenocarcinoma of Lung/drug therapy , Computational Biology , DNA-Binding Proteins/genetics , Emetine/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/complications , Lung Neoplasms/drug therapy , Molecular Docking Simulation , SARS-CoV-2/drug effects , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Transcription Factors/genetics
3.
Front Pharmacol ; 13: 874637, 2022.
Article in English | MEDLINE | ID: covidwho-1847201

ABSTRACT

Purpose: The persistent pandemic of coronavirus disease 2019 (COVID-19), the discovery of gastrointestinal transmission routes and the possible susceptibility of cancer patients to COVID-19 have forced us to search for effective pathways against stomach adenocarcinoma (STAD)/COVID-19. Vitamin D3 (VD3) is a steroid hormone with antiviral, anti-inflammatory and immunomodulatory properties. This study aimed to evaluate the possible functional role and potential mechanisms of action of VD3 as an anti-COVID-19 and anti- STAD. Methods: Clinicopathological analysis, enrichment analysis and protein interaction analysis using bioinformatics and network pharmacology methods. Validate the binding activity of VD3 to core pharmacological targets and viral crystal structures using molecular docking. Results: We revealed the clinical characteristics of STAD/COVID-19 patients. We also demonstrated that VD3 may be anti- STAD/COVID-19 through antiviral, anti-inflammatory, and immunomodulatory pathways. Molecular docking results showed that VD3 binds well to the relevant targets of COVID-19, including the spike RBD/ACE2 complex and main protease (Mpro, also known as 3CLpro). We also identified five core pharmacological targets of VD3 in anti-STAD/COVID-19 and validated the binding activity of VD3 to PAI1 by molecular docking. Conclusion: This study reveals for the first time that VD3 may act on disease target gene SERPINE1 through inflammatory and viral related signaling pathways and biological functions for the therapy of STAD/COVID-19. This may provide a new idea for the use of VD3 in the treatment of STAD/COVID-19.

4.
Emerg Microbes Infect ; 11(1): 1010-1013, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1750052

ABSTRACT

Equine coronavirus (ECoV) was first identified in the USA and has been previously described in several countries. In order to test the presence of ECoV in China, we collected 51 small intestinal samples from donkey foals with diarrhoea from a donkey farm in Shandong Province, China between August 2020 and April 2021. Two samples tested positive for ECoV and full-length genome sequences were successfully obtained using next-generation sequencing, one of which was further confirmed by Sanger sequencing. The two strains shared 100% sequence identity at the scale of whole genome. Bioinformatics analyses further showed that the two Chinese strains represent a novel genetic variant of ECoV and shared the highest sequence identity of 97.05% with the first identified ECoV strain - NC99. In addition, it may be a recombinant, with the recombination region around the NS2 gene. To our knowledge, this is the first documented report of ECoV in China, highlighting its risk to horse/donkey breeding. In addition, its potential risk to public health also warrants further investigation.


Subject(s)
Betacoronavirus 1 , Coronavirus Infections , Horse Diseases , Animals , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Diarrhea/veterinary , Equidae , Horse Diseases/epidemiology , Horses , Phylogeny
5.
Front Immunol ; 12: 707287, 2021.
Article in English | MEDLINE | ID: covidwho-1359191

ABSTRACT

Background: The outbreak of Coronavirus disease 2019 (COVID-19) has become an international public health crisis, and the number of cases with dengue co-infection has raised concerns. Unfortunately, treatment options are currently limited or even unavailable. Thus, the aim of our study was to explore the underlying mechanisms and identify potential therapeutic targets for co-infection. Methods: To further understand the mechanisms underlying co-infection, we used a series of bioinformatics analyses to build host factor interaction networks and elucidate biological process and molecular function categories, pathway activity, tissue-specific enrichment, and potential therapeutic agents. Results: We explored the pathologic mechanisms of COVID-19 and dengue co-infection, including predisposing genes, significant pathways, biological functions, and possible drugs for intervention. In total, 460 shared host factors were collected; among them, CCL4 and AhR targets were important. To further analyze biological functions, we created a protein-protein interaction (PPI) network and performed Molecular Complex Detection (MCODE) analysis. In addition, common signaling pathways were acquired, and the toll-like receptor and NOD-like receptor signaling pathways exerted a significant effect on the interaction. Upregulated genes were identified based on the activity score of dysregulated genes, such as IL-1, Hippo, and TNF-α. We also conducted tissue-specific enrichment analysis and found ICAM-1 and CCL2 to be highly expressed in the lung. Finally, candidate drugs were screened, including resveratrol, genistein, and dexamethasone. Conclusions: This study probes host factor interaction networks for COVID-19 and dengue and provides potential drugs for clinical practice. Although the findings need to be verified, they contribute to the treatment of co-infection and the management of respiratory disease.


Subject(s)
COVID-19 Drug Treatment , COVID-19/pathology , Computational Biology/methods , Dengue/drug therapy , Dengue/pathology , Protein Interaction Maps/physiology , Antiviral Agents/therapeutic use , Chemokine CCL2/metabolism , Coinfection , Dengue Virus/drug effects , Dexamethasone/therapeutic use , Gene Expression Regulation/genetics , Genistein/therapeutic use , Humans , Intercellular Adhesion Molecule-1/metabolism , Lung/metabolism , Resveratrol/therapeutic use , SARS-CoV-2/drug effects , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL